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BEHAVIOR OF A FLAT STRETCHED MEMBRANE WRINKLED
BY THE ROTATION OF AN ATTACHED HUB*

By Martin M. Mikulas, Jr.
Langley Research Center

SUMMARY

Analysis and experiment are presented for the wrinkling behavior of
stretched membranes subject to a torque loading through an attached hub. The
analysis makes use of a theory for partly wrinkled membranes which is based on
a study of average deformations in the wrinkled region. Closed-form solutions
are obtained for several different boundary conditions, and results are given
in the form of torque-rotation plots. Experimental results from tests on thin
sheets of plastic film were found to be in very good agreement with theory.

INTRODUCTION

In the design of space-~vehlcle structures there are applications for very
thin walled shell structures - shells which are so thin that they can be treated
analytically as membranes which have zero bending stiffness and can carry no
compressive stress. Under certain loading conditions, wrinkling can occur over
a portion of a membrane structure, and it is desirable to understand the behav-
ior of the structure in such a condition. The attainment of this goal is
advanced by the solution of fundamental wrinkled-membrane problems; one such
problem is that of the rotation of a hub attached to a flat stretched membrane.
This particular problem will be of importance in itself when structural members
or other components must be attached to thin membrane-like walls.

The somewhat related problem of an annular plate buckled by the rotation
of an attached hub has been solved by W. R. Dean in reference 1. In refer-
ence 2 Reilssner has solved the case of an initially unstretched membrane by
using tension-~field theory. In reference 3 Stein and Hedgepeth present a theory
for partly wrinkled membranes, and the solution is given for the rotation of a
hub attached to a stretched membrane of infinite extent. In this wrinkled mem-
brane theory a detailed study of the wrinkles is not made, but average strains
and displacements in the wrinkled region are considered. This theory is

*The information presentea herein is based in part upon a thesis offered
in partial fulfillment of the requirements for the degree of Master of Science
in Engineering Mechanics, Virginia Polytechnic Institute, Blacksburg, Virginia,
June 196k4.



limited to small average strains and displacements in the same sense as in
linear elasticity theory.

In the present paper, a generalization of the results given in reference 3
is presented, and an experimental study is described which lends credence to the
validity of partly wrinkled membrane theory. The primary problem solved in the
present paper is that of the rotation of a hub attached to a finite, stretched,
circular membrane, in which it is assumed that the hub is attached subsequent
to the application of a uniform tension in the membrane. The special case of
the rotation of a hub on & circular membrane with zero tension is included in
appendix A. For this special case the equations in the present paper reduce to
the equations given by Reissner in reference 2. Finally, the case is treated
in which the hub is attached prior to stretching the finite membrane; results.
obtained for an infinite membrane are discussed in appendix B.

SYMBOLS

a radius of hub
b radius of circular membrane
r radial coordinate
To radius of plate as defined in figure 11
t thickness of membrane
u,v displacements in r and 6 directions
X,y rectangular coordinates
E Young's modulus
G shear modulus, 5 __

2(1 + v)
M torque
P load per unit thickness
R radial extent of wrinkled region
T initial uniform tensile stress
N number of loads
C15Cpyeee constants
a, B angles defined in figure 9



5] angular coordinate

A function determining strain in direction perpendicular to wrinkles,
"variable Poisson's ratio"

v Poisson's ratio for m;terial

¢ rotation of hub

€15€5 Principal strains

€xs €y direct strains in rectangular-coordinate system

Yxy shear strain in rectangular-coordinate system

(Dl,¢1),(p2,¢2) polar coordinates (see fig. 11)

1 €p direct strains in polar-coordinate system

0 shear strain in polar-coordinate system

L2 0o principal stresses

%2 Oy direct stresses in rectangular-coordinate system
Ky shear stress in rectangular-coordinate system

2 %9 direct stresses in polar-coordinate system

0 shear stress in polar-coordinate system

WRINKLING THEORY

By definition a membrane has zero bending stiffness and, therefore, can
carry no compressive load. In reference 3 this feature is utilized as a basis
for developing a theory for membranes which are wrinkled over a portion of their
surface. In this theory it is reasoned that for wrinkling to occur, one princi-
ral stress must be zero and the other nonzero. The zero principal stress is
perpendicular to the wrinkles while the nonzero prineipal stress acts along the
wrinkles. From the plane stress equations for principal stresses, the condition
that one principal stress vanish is given by

Ox0y = Tyy® (1)



Equation (1) along with the equilibrium equations

~
E}E + a’rxy- = Q
ox oy >

(2)
&i + aTX'y =
dy ox )

form a set of three equations in the three unknown stresses for the wrinkled
region.

The strain along the wrinkles is given as

o
€] = E% (3)

while perpendicular to the wrinkles the average strain is considered to be
o1
€ = '7\(X1Y)E (4)

The quantity AN(x,y) 1s introduced as the "variable Poisson's ratio" to allow
for contraction of the material in a direction normal to the wrinkles. At the
boundary between wrinkled and unwrinkled regions of the membrane, A(x,y) must
equal Poisson's ratio for the material.

The stress-strain relations may now be written for the wrinkled region as

= (g, -
~ 1
ey = 5oy - Mox) (5)
y 2(1 + ) .
=5  xy
Xy E g
The usual strain-displacement equations are
-~
du
€x = a—x
_ oV 5




where the displacements in the wrinkled region are considered to be average
displacements. A detailed study of the wrinkles has not been attempted in this
theory since the overall behavior of the membrane structure is of primary
interest.

ANATYSTS

In the problem treated in the N —
present paper, the membrane is
stretched by a uniform stress T,
and the attached hub is rotated
through an angle ¢ by a torque
M. After a certain value of ‘\ i
torque, wrinkles begin to form l
around the hub out to some | a
radius R as illustrated schemat- H
ically in figure 1 and shown in the
photograph in figure 2. To analyze
this behavior, the wrinkling theory
previously discussed must be used.

The solution for the unwrinkled Hub
region can be obtained readily by a Wrinkles
plane stress elasticity analysis.

Since the wrinkling theory involves Fixed
average deformations, stresses, Boundary
strains, and displacements for this Flgure 1.- Schematic diagrem of a membrane
problem are considered independent wrinkled by rotation of attached hub.

of 6 (radially symmetric).

Basic Equations

The equilibrium equations for a radially symmetric stress state are

=0 (7)

dTI‘e + 271.6
dr r

=0 (8)

Integration of equation (8) gives

M
TIe = - (9)



Figure 2.- Stretched specimen in wrinkled condition. 1-63-197h4

where the constant of integration has been chosen to satisfy the shear-stress-
torque relationship

o
% 2

M= -t o Trerde

The strain-displacement relations for radially symmetric deformations are

u

€ =7 > (10)
v _v

yre—dr T



Thus, compatibility of the strains requires that

= (11)

€r

a
3(T<)

Solution of Equations

Unwrinkled region.- In the unwrinkled outer region of the circular mem-
brane (r > R), the following conventional stress-strain relations hold:

% (O’r - vce?

]

€r

(12)

Elimination of o, between the first equilibrium equation (7) and equa-

tions (11) and (12) gives the following differential equation for oy

dzc dcr
L 3 T
dre dr

r 0

The solution of this differential equation is

e

2

+ Co (13)

r

From equation (7) is obtained as:

%

(1k)

= - — +

q, 02
e r2

To determine the displacements, equations (13) and (14) are substituted into
the stress-strain relations (egs. (12)) and then the strain-displacement rela-
tions (egs. (10)) are utilized to obtain

u 1 (L +v) T
? = EEC]— ———r2 + (l - V)Ce]
and > (15)
v _v__1_M
dr ¥ G Enret




The solution of the second of equations (15) is

v = 2 + Cxr (16)

Wrinkled region.- In the inner region, a < r < R, the counterpart of the
condition for zero principal stress (eq. (1)) in polar coordinates is

Equation (17) together with equation (9) gives

2

M 1

Op = m— (18)
o MngtgrlL Or

Equation (18) together with the first equilibrium equation (eq. (7)) may now be
written as

o SR SN S (19)

Equation (19) may be rewritten as

d(roy) 3 M2 1
dr hnlte rd

and after multiplying this equation through by dr, the guantity ro,. is
obtained by integration. The solution is

2

1 M
T ;d04 i LxPtPr? (20)

and from equation (18)

5 .

M 1
O, = (21)

O 4pRe2S M2



The stress-strain relations for the wrinkled region are

€p = %(orr - ?\ce)
€g = %(09 - Kcr) > (22)
yg = 2(1E: A) Tr?)

where A = A(r) is the variable Poisson's ratio as previously discussed. From
the compatibility equation (11), the first equilibrium equation (7), and equa-
tions (22), the following differential equation is obtained:

- 4a _ 1
ar ro, dr(roe) r

After substitution for op and gy from equations (20) and (21) in the pre-
ceding equation, integration yields the following equation for Al

4n2t2C), ro
1 1 1 L
A== - = logl—————— - 1] + C (23)
2 4ﬂ2t20ur2 2 M= 2
M2 -t

Now, from the strain-displacement equations (10) the displacements for the
wrinkled region may be written as

1
b 2t2C), r2 L2t 20y, 7 2t2C), r2

- ARSI e TE I P i LAY 205 (2k4)

bnEtr M2 M2 M2

and
2.2 2
M ba=t=Cyr o

v = )_HTEtr 1l + 205 - lOg(—ME—' - > + C6r (25)

To determine the seven unknown constants (Cl, Cos C3’ Cys C5, Ce»

and R) seven relations are necessary. Four relations are obtained from
enforcing continuity on o, and the displacements u and v at the border

between the wrinkled and unwrinkled regions and from the continuity condition
that A =v at r = R. The three remaining relations are obtained from bound-
ary conditions on u and v at the outer boundary and a boundary condition on

9



u at the hub. Note that one additional constant of integration has already
been determined in relating the torgue to the shear stress (eq. (9)).

Continuity conditions between wrinkled and unwrinkled regions.- By using

the condition A=V at r =R in equation (23)

kx2t2c, RE
C5=v-% 1 +%1og-,—_l‘-1 (26)
b 2t20), R® M2
_— .1
M2
- For op to be continuous at r = R
2
2 c
M 1 _
Y 2e PP * <‘Iq‘ * C2R> -C, =0 (27)

Two more relations between constants are obtained from the conditions that the
u and v displacements be continuous at r = R; thus

2ntC 2 hatoC, R
ey IR (28)
2
and
1 LmEtche N
C, = =1 + + (29)
6" g2 M bt 2c) R .

M2

Conditions at edge of hub and outer boundary of membrane.- At the outer
boundary the tangential displacement is taken as zero (v(b) = 0). For a mem-
brane stretched by a uniform tension T, the radial displacement is

u(r) = (1 - v)%g; thus when the hub is attached to a finite circular membrane
after the membrane is stretched, the boundary conditions on the radial displace-
ment u are:

u(b) - .(_l_-_Ev_)E
a(a) = (1 —Ev)Ta

When the boundary condition v(b) = O is applied to equation (16), the
constant C3 is determined immediately as:

10



M

P (30)

C5=_

When the two boundary conditions on u are applied to the first of equa-
tions (15) and to equation (24), respectively, the following two relations are
obtained:

C 3
_ 1 (1 +v)
02-T+b2 (@ -v) (1)
and
2, 2 2t20, a2
(1 - v)Ta _ M Juﬁzt C,a -1 1 + log Ef_E_E&E_ -1} -2C (32)
E hnEtav M2 hnztecuae M2 2
T

If the torque M on the hub is small enough so that wrinkling does not
occur, equation (16) holds throughout the membrane so that

v=-M[3L1_ =z
LGt \r 2
where 03 has been evaluated {rgm equation (30). Thus, for the prewrinkled
v{a

range, the hub rotation @ =

can be expressed as a linear function of M
as follows:

2G§ M
qu_- 23) 2na2Tt

b2

(33)

When the torque on the hub is increased beyond the value at which wrinkling
occurs, the solution proceeds as discussed subsequently. Let v = 1/3 and
define the following dimensionless parameters:

— Cy

= M = 2G§ _— _ =
Moot T v AT ay BT BT

J
Enath

R
a



Combine equations (26) and (32) to obtain

r—- —
C
RS 4
Ve 2 N
+ _'} - log -=| == (34)
R:_2-l _—- ]
M T i

Combine equations (31) and (28) to obtain

2
— — 2
012 - [1 + 201(%):| R+ 0 (35)

Combine equations (31) and (27) to obtain

=k

]

2 —
R

The quantities M, Cjp, and Eﬁ are found from equations (34), (35), and (36)
for given values of R and a/b by trial and error.

The rotation of the hub @ = vgé) is found from equation (25) where Cg
is eliminated by using equation (29), and C5 1is eliminated from equation (26).
Equation (25) can be written as

1
- -2
= F — - =2 4=
QT Py AT
3 5/R — -1
b EQ
- -

A nondimensional plot of this torque-rotation relationship is presented in fig-
ure 3 for values of a/b equal to 1/2, 5/32, 3/32, and O. Note that for
a/b = 0 the solution in this paper reduces to the solution given in refer-

ence 3 for an infinite membrane.

The maximum stress in the membrane is the nonzero principal stress at the
hub. In the wrinkled region this principal stress may be written as

01 = On + 0'e (38)

12
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Figure 3.~ Plot of rotation due to torque of hub on flat stretched membrane.

When the expressions for stresses from equations (20) and (21) are substituted
into equation (38), the following equation for oy 1s obtained:

o )
O'l = )+/r (39)

Yt ope

Now, by evaluating o7 at the hub (r = a) and using the dimensionless param-

eters previously described, the following nondimensional equation can be
written:

13



Ul(a) _ EL (ho)

Y-

A plot of cl(a)/f as a function of M 1is presented in figure 4 for values of
a/b equal to 1/2, 5/32, 3/32, and O.

0 1 1 1 | . 1 J
0 2 4 6 M 8 10 12
2wa2Tt

Figure L.- Plot of principal stress at hub.

EXPERIMENT

The units used for the physical quantities in this section are given both
in the U.S. Customary Units and in the International System of Units, SI

14



(ref. 4). For the purpose of explaining the relationships between these two
systems of units, appendix C is included.

Test Specimens

Tests were performed on circular specimens of 1/2-mil (12.7~pm) polyethyl-
ene terephthalate plastic film, one of which is shown in figure 2 mounted on the
test fixture. To achieve an initial uniform stress T 1in a portion of the
specimen, 16 evenly spaced radiasl loads were applied.at the periphery of the
specimen. An analysis (see appendix D) was made which indicated that under such
a loading a uniform stress state would exist in the central portion of the
specimen, extending outward about six-tenths of the distance from the center.
Based on this result the specimens were chosen to be 28 inches (71.1 em) in
diameter with a boundary ring 16 inches (40.6 cm) in diameter.

To transmit the radial load as smoothly as possible into the thin plastic
film specimen, filament-reinforced pressure-sensitive adhesive-tape tabs were
attached as can be seen in the photograph in figure 2. The tape tabs were
rounded to reduce the effect of stress concentrations.

Test Apparatus and Procedure

A schematic drawing of the test setup and rotation-measuring apparatus is
shown in figure 5. A photograph of the test fixture before mounting a specimen
is shown in figure 6. The procedure for mounting a specimen was as follows:

(1) A thin coat of a synthetic elastomeric adhesive was applied to the hub,
to the boundary ring, and to the portion of the specimen which would come in
contact with the hub and boundary.

(2) A plexiglass ring was used to keep the specimen raised off the hub and
boundary ring until the specimen was stretched. This ring was mounted on screws
and was placed concentric with the boundary ring on the text fixture (see
fig. 6). The plexiglass ring was then adjusted until it was parallel with the
top of the boundary ring but slightly higher.

(3) The specimen was then placed over the plexiglass ring and the 16 radial
loads were applied through strings which passed over knife-edge supported pulleys
and were attached to separate shot buckets of equal weight (see fig. 7).

(4) It was found that after the specimen was completely loaded, due to the
very low constraints offered by the knife-edge pulleys, the system was self-
centering. Therefore, to complete the mounting of the specimen, the plexiglass
ring was simply lowered until the glued portion of the specimen came in contact
with the boundary ring and hub, at which time a completed seal was accomplished
by applying pressure to the glued joints with a cotton swab. The 16 radisl
loads were not removed from the specimen after gluing to help insure a fixed
boundary.

The torque was applied through a pulley which was attached to a shaft which,
in turn, was attached to the hub. The shaft was supported by ball bearings to

15
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Figure 5.- Schematic of test setup.
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Plexiglass rit

Figure 6.- Test stand without specimen. 1-63-1976.1

help minimize friction in the system. A string from the pulley attached to the
shaft passed over the lower knife-edge pulley (see fig. 6) to a shot bucket.
The torque applied to the membrane through the hub was simply the weight of the
shot bucket times the radius of the pulley attached to the shaft.

To measure the rotation of the hub, an optical lever system was utilized.
A 1/4-inch (0.64-cm) square front-faced mirror with an 8-foot (2.4-m) focal-
length lens glued on its face was attached to the center of the hub. This
mirror-lens combination focused the reflected image of a 0.029~-inch (0.0Th—cm)
diameter point light source from a concentrated arc lamp on an 8-foot (2.4-m)
radius curved screen (see fig. 5). The rotation of the hub ¢ was given by
the measured displacement of the reflected image on the screen divided by twice
the distance from the mirror to the screen. '

More than 30 specimens were used in the development of this testing pro-

cedure. All of the test results are not presented herein because of improve-
ments made in subsequent tests. The results of the three final tests are for

17




Figure 7.- Specimen mounted on test stand. L-63-1975

the same value of a/b and give essentially the same results. These results
are presented as one set of test points in figure 8.

RESULTS AND DISCUSSION

In figure 3 the analytical torque-rotation plot is given for the rotation
of a hub which is attached to a flat stretched membrane after the membrane is
stretched. The flat stretched membrane behaves as an elastic plate until

M

PnalTt
At this value of the torque parameter, a region around the hub in an elastic
plate would go into compression, but since a membrane can carry no compressive
stress, wrinkling occurs in the membrane. As the torque is increased, the
stiffness (the slope of the torgue-rotation plot) of the wrinkled stretched mem-
brane decreases in a nonlinear fashion as shown in figure 3. However, there is

18

wrinkling occurs at a value of the dimensionless torque parameter = 1.
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Figure 8.- Torque-rotation results for wrinkling of stretched cilrcular membrane with

hub attached after stretching; % = g%.

no sharp reduction in stiffness and the torque can be increased until failure
of the material occurs. The symbols in figure 3 denote the varlious values of
R/a (ratio of radius of wrinkled region to radius of the hub) as indlcated in
the figure.

A dimensionless plot of the principal stress at the hub is given in fig-
ure 4. Here asgain the behavior is linear until wrinkling occurs, after which
the stress increases in g nonlinear fashion.

A set of experimental points representing the results from three separate

tests are given in figure 8 for a/b = 5/32. It was necessary to have the
value of the shear modulus G for the material to compare the experiment with

19



theory. The shear modulus G was obtained from the linear range of the tests,
and this value for G was used throughout the wrinkled range. It 1s believed
that this method gives a very good measure of G for the material. The value

of G obtained from these experiments was 240,000 psi (1.65 gg).
m

The experimental results, as can be seen in figure 8, lie slightly above
the theoretical results. It 1s believed that some of this small discrepancy
exists because the theory is for a perfect membrane with zero bending stiffness
while in fact the plastic film used in the tests has a finite, though small,
bending stiffness.

In appendix A the case of a hub attached to an unstretched membrane is
treated. For this special case, the equations in the present paper are shown
to reduce to those obtained by Reissner (ref. 2) using tension field theory.

To investigate the difference in attaching the hub to the membrane before
the membrane is stretched, a discussion 1s given in sppendix B. It was found
that although the stiffness in the wrinkled range is higher for this case,
wrinkling occurs earlier.

CONCLUDING REMARKS

Closed-form solutions are presented for the rotation of a hub attached to
a flat stretched circular membrane for the complete range of loading from the
prewrinkled state into the partly wrinkled state. Solutions are given for a
membrane of finite extent for the case in which the membrane is stretched before
the hub is attached, and for the case in which the membrane is unstretched.
For the case of the unstretched membrane, the equations in the present paper
reduce to those previously found by using tension field theory.

In the experimental study, the membrane was represented by a thin, flat
plastic film. Torque-rotation studies were made on such sheets and the results
from a typical test are compared with theory. The agreement between experi-
ment and theory is very good but the experimental results lie slightly above the
theory. It is believed that some of this small discrepancy exists because the
plastic film in these tests was not a perfect membrane but had some finite

bending stiffness.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., June 9, 196k.

20

e w1 wm

- = e —im g g




APPENDIX A
SPECIAL CASE OF HUB ATTACEED TO UNSTRETCHED MEMBRANE

For the case of a hub attached to an unstretched membrane, wrinkling occurs
over the entire membrane as soon as a finite torque is applied to the hub. The
boundary conditions on displacements for this problem are u(a) = u(b) = 0.
Applying these boundary conditions to equation (24) results in the following
transcendental equation for Cy:

1 :t2't20,+a2 1 haPtZe) b2 \
—_ + log{————— 1| - — - log\————— - 1! =0
k60, 02 M2 haP2c) b2 M2
- * —_— -1
M2 M2
(41)

When the constant Cy 1s known, the stresses can be found from equations (17) )
(20), and (21).

To determine the angle of the wrinkles a (fig. 9) the stresses may be
written as:

Ul COSECL

oy sin®a (A2)

Or

%9

Tro -0y sin a cos o

Oor

2 % 1
tan“q = — = - (A3)
Or Hﬁ2t204r2

2

M
and from this equation

sin a = (AL) Wrinkle

M
2t VE[r

This same problem of zero initial tension has
been solved by using tension field theory by
Reissner in reference 2. It will now be shown
that for this case the solution in the present
paper is the same as the solution found by
Reissner. From figure 9 the relationship Figure 9.- Angles of wrinkle «
between the angles o and B 1s found to be: and B.

Hub

sin a = % sin B (a5)



or

sin B = J—- (A6)
2nat¢5£
Equation (Al) can now be written as P
- 2 2 2
log 12 sin®g \ | __sin Be 1 - 12- sin® |\ _ o (A7)
25 - Sin2B 1l - sin B b-é - gin B
a

a

From equation (A6) the angle B can be found for a given ratic of a/b. The
ratio of the radial stress to shear stress may be written in terms of B as

2
¢1 - & 5in°g
O'r 1‘2
== = (a8)
re = sin B

At the inner and outer edges, respectively, these stress ratios are

op(a)
m = =~cot B
o
and 5
5 (49)
b= _ sin2B
ar(b) o2
To() sin B

/

Equations (A7) and (A9) are identical to those found by Reissner, and plots of
B and the stress ratios as a function of values of a/b ranging from O to 1
are given in reference 2.
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APPENDIX B

DETERMINATION OF THE EFFECT OF ATTACHING THE HUB TO

THE MEMBRANE BEFORE THE MEMBRANE IS STRETCHED

The torque-rotation relationship for the case in which the hub is attached
after stretching the membrane was obtained in the body of report by trial-and-
error solution of equations (34), (35), and (36) and utilization of egua-
tion (37). TFor the case in which the hub is attached before the membrane is
stretched, the boundary condition at the hub is wu(a) = 0. The application of
this boundary condition to equation (24) results in the replacement of the
right-hand side of equation (34) by zero. The two equations (35) and (36)
remain unchanged. These three equations are now rewritten as

(> C
R2H2—“-1
-2l=0 (B1)
Cy 3
- |
7
_
R+ M =0 (B2)

and

= = 1 —=/a 2 ﬁ?
cu=%+ %+%(g>:}cl}2 +%2- (B3)

The quantities M, Ei, and EL mst be found from equations (Bl), (B2), and

and (B3) for given values of R and a/b by trial and error as was done pre-
viously. The hub-rotation parameter @ is again found from equation (37).

Note that the factor in equation (Bl) which involves the radical yields no
real torque-rotation relationship; therefore, the bracketed transcendental fac-
tor must be used. The solution to these equations was carried out for a/b = 0
(an infinite membrane) and the results are compared in figure 10 with the results
for the case in which the hub was sttached after stretching the membrane. As
seen there is very little difference between the two solutions. Although

wrinkling occurs earlier [at S = lZ) for the case in which the hub is
onalrt <

attached before the membrane is stretched, a slightly stiffer torque-rotation

relationship is exhibited in this case after wrinkling commences.
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Figure 10.- Comparison of analytical results for rotation of hub attached to stretched

infinite membrane for two different boundsry conditions at hub.



APPENDIX C
CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS

The International System of Units (SI) was adopted by the Eleventh General
Conference on Weights and Measures, Paris, October 1960, in Resolution No. 12
(ref. 4). Conversion factors required for units used herein are:

nches X 0.0254 = Meters (m)
Length:
Feet X 0.3048 = Meters
Force: Pounds X 4.4482216 = Newtons (N)
Stress: Pounds/inch® x 6.895 x 107 = Newtons/meter2 (N/m2)
Prefixes to indicate multiples of units are:

2 centi (e)

10”
106 micro ()

107 giga (G)



APPENDIX D

STRESS DISTRIBUTION DUE TO AN EVEN NUMBER OF EQUALLY SPACED

RADIAT, LOADS ON A CIRCULAR FIATE

An analysis is made to determine the extent of essentially uniform stress
which can be obtained in a plate loaded by N/2 pairs of discrete equal radial
in-plane loads. In reference 5 the linear elasticity solution for two diamet-
rically opposite radial loads P applied to a circular plate is discussed. The
quantity P denotes a concentrated load per unit thickness. The solution for
N/2 pairs of diametricelly opposite loads applied to a circular plate of
radius r, 1is obtained in the present paper by superposition of the results

given in reference 5 for a single pair. of loads.

For two diametrically opposite loads on a circular plate, the stresses at

a point are obtained by superposing a uniform compressive stress o' = - ;5—
o
and the two simple radial distribu-
N tions at the point
~
2P cos ¢l
o] = —
P1 1P
0 (D1)
; ! 2P cos §,
~ o] = —
| O Po ﬂpa

/
<O
The stresses Gpl and cpg are

o in the directions of p; and Pos

respectively (see fig. 11). The
stresses for one pair of radial

loads (Er, Gy, and Tpg) are
5 given throughout the plate in
terms of the central polar coordi-

nates (r,6) by the following
transformation:

Ve

Figure 11.- Coordinate systems and
stresses on an element for cir-
cular plate with a pair of dia-
metrically opposite radial
loads P.
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Q
H
|

= Op, Sine\lfl + cp2 sin2\y2 + o'

o0, coszxvl + 9p, CO52W2 + g > (D2)

Trg = =90, sin ¥; cos ¥1 - dp, sin ¥, cos ur%

where V¥, = % -f)+0 and V¥, = % - f5 - 8. On combining equations (D1)

and (D2) the stresses are:

\

~ _2p cos Py Sin2W1 . cos P sinewz A

oo« o1 Po 2r,
~  opfcos Py cosa\yl cos Py cosgwe 1 >

n Py P2 2rg '

N opfcos Py sin ¥ cos ¥y , o8 Po sin ¥, cos Vo

Trg = = =

e T Pl P2 /)

The geometric relations between coordinate systems (pl, ¢l)’ (p2, ¢2) ,

and (r,0) are

2 _ 2 2
p:L =Tr,~ +r° - 2rr, sinew
2 _ .2 2
P + r° + 2rry sin ©
?r_ cos 0
g = tan~t o
1-ZX sine (Dk)
To
T
1 T cos O
¢2 = tan™
1 + — sin @
To
J
27



The stresses o Oy and Trg

r’

at a point due to N/2 pairs of loads are now

found by superposing the stresses for each pair of loads as given by equa-

tions (D3).

_-1 —

These stresses may be written as:

2
op |oo ¢l K cosg( ¢1 k) . cos ¢2,k cos (eli f_¢g,k) N
\, 2 2 . _ d 2 2 — . B 2I'0 "5
Lro + r° - 2rr sin ek ry” +r° + 2rro sin 6y

N 1 —
5=
.. 2 .
O, = 2P cos ¢Lk sin (ek -,élzkz + cos ¢2 k S0 ( ,+ ¢2 k) -1 | (p6)
° s o ein oy [P r s sineg O
k=0 L-ro + r - 2rr, sin 6y r,~ + r° + 2rrg k
N-1
5 -
op cos ¢l,k cos(¢l’k - O Sin(¢_1;_k,_,-,_ ek)
T = = 1€ R — - .
ro E o) .
=0 Vro + 172 - 2rro sin ek
cos cos + 8 i + 6
+ ¢2)E (¢2,kﬁr VE)S n(¢2)k k) (D7)
Vrog +r2 + 2rr, sin Oy
2nk
P where ek—60+—-§1—, k is a
- a range index, and f7 and f,
-
- are given in equations (Dk). The
-7 quantity 6y 1is the angle of a
It diemetrical line along which the
- stresses are calculated (see
= cul fig. 12). Since the stresses are
S~ /% the same between any two consecu-
~ tive pairs of loads, 6@ 1s
T~ defined in the region
~
~ on
\\\\\ 0L0g< . For 6g =0 the
S~ stresses due to N loads are
p obtained along a diametrical line

Figure 12.- Angle 6 between each neighboring
pair of radial loads.
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between two loads.

Equations (D5), (D6), and
(D7) were progremed on a high-
speed digital computer and for




the case of N = 16 the results for three values of 0y are shown in fig-
ure 13. The gquantity oy 1in figure 13 is the stress obtained if the load NP

were uniformly distributed around the circumference of the circular plate. As
can be seen in figure 13, the stresses for 16 discrete radial loads out to a

value of r/r0
uniform stress

Stress Ratios

Stress Ratios

Stress Ratios

Flgure 13.

0.2

0.2

0.2

= 0.6 are essentially that of a circular plate subjected to a
Ogy = SP/nry.

9
[e)
o av
g =0
(o]
ra %
| | %V\ | _Tav
0.4 n 0.6 0.8 1.0
b
_ (o]
6, = 5.625
%
___ﬁ__=:::::: Cav
[o}
T Sr
_re Oqv
Oav
| | | |
0.4 0.6 0.8 1.0
C
b
_ o]
g = 11.25
%
. UGV
Tro Sr
) Sav
l | °V_\| S
0.4 0.6 0.8 1.0
r
b

- Ratios of stresses in plate loaded by 16 discrete radial loads to average stress
obtained by distributing discrete loads uniformly around circumference.
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